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We consider the drainage of fluid trapped beneath a two-dimensional drop that
sediments towards a horizontal plane. The governing equation is closely related
to that for capillary drainage (without gravity) of an annular film discussed in a
companion paper (Lister et al., J. Fluid Mech. vol. 552, 2006, p. 311). When drainage
starts, dynamical structures rapidly appear that are usually called dimples in the
context of sedimentation. Dimples are constant-pressure regions to which most of the
fluid in the film is confined, which are analogous to the collars and lobes that appear
in annular capillary drainage.

The process of drainage is controlled by a Bond number, B , that measures the
relative importance of gravity and surface tension for the sedimenting drop. When B

is sufficiently small, all the fluid ultimately drains from a single small dimple and the
drop takes a static sessile equilibrium shape. The dimple-drainage process is the same
as that of a lobe. When B is sufficiently large, several permanent dimples are formed
under the drop, and these exhibit complex dynamics of collision and interaction
analogous to that of collars and lobes. No static drop shape is reached, even for long
times. For critical values of B , fluid may be permanently trapped in one or more
stationary dimples (analogous to collars), and families of equilibrium drop shapes are
found that depend upon the quantity of trapped fluid.

1. Introduction
When a drop of one fluid settles through another fluid onto a rigid horizontal plane

it is well-known that some of the external fluid becomes trapped in a squeeze film
between the drop and the plane (e.g. Jones & Wilson 1978; Yiantsios & Davis 1990;
Ascoli, Dandy & Leal 1990). In the absence of van der Waals forces, the flow in the
film is driven by a combination of hydrostatic and capillary pressure and is described
by lubrication theory. The governing equation is closely related to that for capillary
drainage of an annular film discussed in Lister et al. (2006, hereinafter I), and, as we
demonstrate below, the main features of the evolution correspond.

If the film drains completely, then at long times, the drop adopts a static shape with
a flat bottom, and this sessile shape is (uniquely) determined by the Bond number

B =
�ρ gb2

σ
, (1.1)

where �ρ is the density excess of the drop and b is its undeformed radius; g is accelera-
tion due to gravity and σ is surface tension. For B � 1 the sessile drop is near-
spherical, and at long but finite times t the almost flat bottom takes the form of a
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small paraboloidal dimple of width O(B1/2) and amplitude O(t−1/4). The fluid trapped
in the dimple escapes slowly through an annular neck of width O(t−1/4) and height
O(t−1/2) (Jones & Wilson 1978) in the same way as a single stationary lobe (in the
language of I) drains into adjacent stationary collars (Hammond 1983). For B � 1 the
equilibrium drop shape is a low-lying, wide pancake, and the size of the flat bottom
is sufficient to accommodate trapped dimples with shapes analogous to collars. The
fluid trapped in collar-like dimples does not drain, just as for collars in I.

In this paper we present a brief investigation into the possibility of complex drainage
behaviour underneath sedimenting drops at large Bond number. For simplicity, we
consider only two-dimensional drops. We do not consider the complex deformation
of large-Bond-number drops far from the wall (Ascoli et al. 1990; Stone 1994) but
instead focus on the late-stage behaviour when the drop has already settled into a
quasi-static shape.

2. Governing equation
For a quasi-static drop shape, the modified pressure just outside the drop is given by

p =
σPd

b
− �ρgh − σhxx(

1 + h2
x

)3/2
, (2.1)

where σPd/b is the pressure in the drop and h(x, t) is the height of the drop surface
above the plane. The height is two-valued: the upper surface of the drop is given by
the equilibrium condition p = 0; below the drop a pressure gradient px drives flow in a
squeeze film that is described by lubrication theory. We scale lengths with b and times
with µb/σ , where µ is the external fluid viscosity, to obtain the film evolution equation

ht +

(
h3

3

(
B h +

hxx(
1 + h2

x

)3/2

)
x

)
x

= 0. (2.2)

We assume that the internal drop viscosity is not so high as to modify the film flow.
At the edges of the film the height can be matched to the equilibrium upper surface
shape since px → 0 as h3 increases rapidly. The term involving B corresponds to the
destabilizing effect of gravity acting on the buoyant fluid trapped below the drop;
the final term corresponds to the stabilizing effect of surface tension. This equation
can also be used to describe the evolution of a thin film coating the underside of a
ceiling (e.g. Yiantsios & Higgins 1989; Ehrhard 1994).

Equation (2.2) is closely related to the equation

ht +
(

1
3
h3(h + hzz)z

)
z
= 0 (2.3)

studied in I for the evolution of the thickness h(z, t) of an annular film, and can be
reduced to it in the limit h2

x � 1 by a rescaling of x by a factor B1/2. Conversely,
the governing equation for drainage of an annular film can be extended by retaining
the full curvature of an axisymmetric film (equation (2.1) in I) instead of the small-
amplitude approximation h + hzz. The retention of the O(h2

x) corrections to the
curvature in (2.2), despite using lubrication theory, is a rational approximation in
the limit where the dynamics are controlled by slow processes in narrow necks for
which h2

x � 1 and lubrication theory holds; the intervening collars and lobes have
quasi-static shapes that depend on the full curvature at large amplitudes (Gauglitz &
Radke 1988).
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Figure 1. Regime diagram for drops of different lengths and cross-sectional areas. See text
for description. Ld/B

1/2 as a function of B .

3. Equilibrium drop shapes
The shapes of sessile drops with no underlying trapped fluid are well-known (see e.g.

Hodges, Jensen & Rallison 2004). In particular, for B � 1 the drop makes contact with
the plane (h = 0) over a length Ld ≈ (π/2)B1/2, with exponentially small corrections,
and the static balance gives Pd = πB/Ld . Other equilibria are possible only if fluid is
permanently trapped under the drop and, as shown in I, this can arise for ‘collar’-like
dimples.

‘Collar’-like static dimple solutions to (2.2) are given by

Bh +
hxx(

1 + h2
x

)3/2
= Pd − pc (3.1)

with hx = 0 at the ends x = x0 ± �/2 of the dimple, where pc is the constant pressure
in the ‘collar’. The term ‘collar’ in this context is somewhat of an abuse of language
in that it suggests an annular structure. For that reason we enclose it in quotation
marks. Nevertheless, it is essential to distinguish between ‘collar’-like and ‘lobe’-
like dimples. The shorter ‘lobes’ also satisfy (3.1) but have hx �= 0 at their ends:
a ‘lobe’ makes a finite contact angle with the plane. In contrast to the solutions
based on a linearized curvature in I, ‘collar’ lengths and pressures here depend on
the volume of fluid that they contain. A ‘collar’ of infinitesimal amplitude A has
the profile h = A[1 + cos(B1/2x)] (for x0 = 0) and so � = 2πB−1/2. The length �(A)
decreases monotonically as the amplitude increases and the shape deviates from the
small-amplitude form.

In figure 1 we show the calculated regime diagram for quasi-static shapes of a drop
with contact length Ld as a function of B: the line OC describes the branch of sessile-
drop solutions with no trapped fluid; BD describes a branch of static equilibrium
solutions which have a single underlying ‘collar’ of trapped fluid of exactly the same
length as the drop (� = Ld); at D the ‘collar’ has the same height as the drop, so that
to the left of D the drop must break into two or more sub-drops. Other equilibrium
branches of solutions (not shown in figure 1) containing more than one ‘collar’
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Figure 2. Sedimentation with B = 6 and h0 = 0.1 showing successive profiles at t = 0
(short-dashed), t =10−2.5, 10−1.5, . . . , 103.5 (solid) and t =104.5 (dashed). The initial conditions
(short-dashed) are approximately symmetric, and for t < 103 the profile remains approximately
symmetric with a single central ‘collar’ and equal ‘lobes’ on either side. The central position
of the trapped ‘collar’ is unstable, and the ‘collar’ slides to the left when t ≈ 103 breaking the
symmetry and leaving a single ‘lobe’ on the right.

bifurcate from the line OC when B ≈ 8, 12, . . . . The drop shapes depend upon the
relative sizes of the ‘collars’ involved.

In the region ABD the drop is shorter than the ‘collar’ of appropriate area, and
hence the dimple instead is ‘lobe’-like and drains by the Jones & Wilson mechanism
until the relevant point on AB is reached; thus small perturbations to drops at D and
the representative point F result in drainage to A and F′, respectively. In the region
EDBC the drop is longer and higher than the relevant ‘collar’, which thus has room
to slide sideways beneath the drop; along DE the ‘collar’ has the same height as the
centre of the drop.

4. Film drainage
To illustrate some of the dynamical possibilities raised by figure 1, we solved (2.2)

numerically for the lower boundary h(x) of the drop on a domain −L � x � L, where
L =Ld(B)+0.25. The initial conditions were that the drop shape should be that of the
sessile drop for that value of B lifted by some constant height h0 (typically 0.1) above
the plane. This prescription bypasses the details of deformation far from the wall
(Ascoli et al. 1990) in order to focus on the phenomena of long-term drainage; the
results depend only weakly on the initial conditions. The boundary conditions were
that the curvature and slope of the interface at x = ±L should continue to equal those
of the sessile shape. This prescription approximates matching to the sessile top surface
of a drop of appropriate area, but neglects the increase in Ld if there is a significant
amount of trapped fluid. Computations are more difficult for this problem than those
described in I in view of the large curvature variation at the edge of the film.

For B � 4 we find that the trapped fluid drains from a single ‘lobe’-like dimple
according to the similarity scalings

h(x, t) = t−1/2f (ξ ), ξ = (x − Ld)t
1/4, (4.1)

of Jones & Wilson (1978) and Hammond (1983), where f is a similarity function
satisfying the constant-flux condition f 3f ′′′ = const.

For B � 4, the trapped fluid forms at least one ‘collar’ with the remaining space
taken up by ‘lobes’. In figure 2 we show the evolution for B = 6 and h0 = 0.1. For
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Figure 3. The heights of the various minima in the calculation with B = 6 shown in figure 2.
There is a clear change in scaling from t−1/2 to t−1 when the ‘collar’ slides from its central
position to the left of the drop at t ≈ 103.

early times a central ‘collar’ forms with ‘lobes’ on either side that drain both into the
‘collar’ and out from under the drop. At this stage the various minima decrease like
t−1/2 (figure 3), as in the similarity solution of Jones & Wilson (1978) and Hammond
(1983). However, the central position for the ‘collar’ becomes unstable around t = 103

and, triggered by numerical noise, the ‘collar’ slides to the left until it meets the edge
of the drop. The sliding motion occurs by the same mechanism and on the same
timescales as those obtained in I and, in particular, the minima ahead of and behind
the ‘collar’ then decrease like t−1. We did not pursue the calculation long enough
to observe ‘peeling’ at the trailing minimum and sliding to the other side (cf. § 7
of I), though it would presumably occur. This calculation and others support the
expectation that the squeeze film under a sedimenting drop at large Bond number
displays the same complex dynamics as the annular film on a long domain. Neither
the difference in boundary conditions nor the use of the finite-amplitude curvature
expression plays a significant role, other than in the definition of quasi-static shapes
and in the critical length.

We also explored the evolution at the critical Bond number, where the trapped fluid
forms a single ‘collar’ of length exactly equal to that of the drop. As shown in figure 1,
the critical Bond number decreases from about 4 as both h0 and the consequent
amplitude of the trapped ‘collar’ increase. The final shapes correspond closely to
those along BD in figure 1, but are not exactly the same owing to the approximations
made to the boundary conditions at the edge of the drop. The evolution of these
shapes is governed by the same similarity equations as for a stationary collar when
L = 2π in § 4 of I, with the necks described by

h(x, t) = t−1F (ζ ), ζ = (x − �/2)t1/2, (4.2)
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Figure 4. The heights of the minima on either side of the central dimple for B =3.97 (solid)
and B = 3 (dashed) with h0 = 0.1. For B = 3.97 and h0 = 0.1 the central dimple is a ‘collar’ and
the scaling hmin ∝ t−1 is in accordance with the similarity form (4.2); for B = 3 the central
dimple is a shorter ‘lobe’ and the scaling hmin ∝ t−1/2 is in accordance with the similarity
solution of Jones & Wilson (1978).

where

−F + 1
2
ζF ′ + 1

3
(F 3F ′′′)′ = 0, (4.3)

F = 1
2
A±ζ 2 + 0.ζ + O(1) as ζ → ±∞ (4.4)

and � is the length of the trapped ‘collar’. An example of the similarity scaling
h ∼ t−1 is shown in figure 4 for B = 3.97, which is the critical value for h0 = 0.1. The
height profiles in the neck at different times can also be collapsed using the similarity
variables and shown to give good agreement with the relevant solution of (4.3) and
(4.4), as in figure 10 of I.

In equation (4.4) the value of A+ is the curvature at the edge of the sessile top
surface; the value of A− depends on the amplitude of the trapped collar and can be
varied by changing h0. The rescaling F → λ4F , ζ → λ3ζ , where λ is a constant, leaves
(4.3) and (4.4) invariant and rescales A± → λ−2A±. Thus the similarity solutions for
the critical Bond number can be reduced to a one-parameter family, defined only by
the curvature ratio A−/A+.

5. Conclusions
The drainage of the film beneath a sedimenting drop of sufficient size displays a

rich dynamics on several different timescales analogous to those of an annular film
explored in I. In addition to the familiar sessile drop shape where the drop makes
contact with the plane along its lower surface, a class of static drop shapes for
which fluid is permanently trapped beneath the drop may be found at critical Bond
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numbers. These unfamiliar equilibria are unstable owing to the increase in the length
of a ‘collar’ with a decrease in its amplitude.

At larger Bond numbers some fluid is permanently trapped beneath the drop and
the film evolves on progressively longer timescales as ‘collar’-like dimples slide and
collide underneath the drop. No static drop shape is attained for finite times. The
mechanism for permanent trapping is the rapid decrease of the minimum thickness
at the leading edge of any ‘collar’ approaching the sessile edge of the drop, just as for
the non-coalescence of one collar approaching another analysed in I.

The phenomena described here arise for two-dimensional drops. We anticipate that
similar dynamics also arise in the three-dimensional case.

N. F.M. was supported by a summer studentship from Trinity College, Cambridge.
We are grateful to Dr S. R. Hodges for the stimulus provided by his preliminary work
on this problem.
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